4-Bit Fast Adder Design: Topology and Layout with Self-Resetting Logic for Low Power VLSI Circuits
نویسنده
چکیده
Dynamic logic families offer good performance over traditional CMOS logic. This is due to the comparatively high noise margins coupled with the ease of implementation. The main drawbacks of dynamic logic circuits are lack of design automation, charge sharing, feedthrough, charge leakage, singleevent upsets, etc. But these draw backs can be eliminated using domino and NORA circuits but still lacks in the application of clock distribution grid and routing to dynamic gates that presents a problem to CAD tools and introduces issues of delay and skew into the circuit design process. A special dynamic logic circuit which resolves these issues is called Self-Resetting Logic (SRL). A new family of self-resetting logic (SRL) primitive gates and adder cells are presented in this paper which can eliminate the above cited issues. The operation of primitive and adder circuit are elucidated and it is simulated using microwind and LT-SPICE simulator. The analysis of basic gates and adder are compared with conventional dynamic logic circuit in terms of area, power dissipation and propagation delays at 0.12-μm 6metal layer CMOS technology is carried out. KeywordsHigh speed, VLSI, Self-resetting logic (SRL), topologies, power dissipation
منابع مشابه
Low Power-area Design of Full Adder Using Self Resetting Logic with Gdi Technique
Various electronic devices such as mobile phones, DSPs,ALU etc., are designed by using VLSI (Very Large Scale Integration) technology. In VLSI dynamic CMOS logic circuits are concentrating on the Area ,reducing the power consumption and increasing the Speed by reducing the delay. ALU (Arithmetic Logic Circuits) are designed by using adder, subtractors, multiplier, divider, etc.Various adder cir...
متن کاملA High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملLow-Power Adder Design for Nano-Scale CMOS
A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملDesign and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology
The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011